Please solve the following exercises and submit BEFORE 12:00 pm (noon) of Thursday $27^{\text {th }}$, November.

Solve the following two exercises from assignment 8 in case you have NOT already solved them.

Assignment 8 Exercises:

Exercise 9

Show that if there were a coin worth 12 cents, the greedy algorithm described in class using quarters, 12 -cent coins, dimes, nickels, and pennies would not always produce change using the fewest coins possible.

Exercise 10

Show that a greedy algorithm that schedules a set of talks in a lecture hall by selecting at each step the talk that overlaps the fewest with other talks does not always produce an optimal schedule.

Assignment 9 Exercises:

Exercise 1

Determine whether each of these functions is $O\left(x^{2}\right), \Omega\left(x^{2}\right)$ and $\theta\left(x^{2}\right)$.
a) $f(x)=17 x+11$
b) $f(x)=x^{2}+1000$
c) $f(x)=x \log x$
d) $f(x)=x^{4} / 2$
e) $f(x)=2^{x}$
f) $\mathrm{f}(\mathrm{x})=\lfloor\mathrm{x}\rfloor \cdot\lceil\mathrm{x}\rceil$

Exercise 2

Arrange the functions $\sqrt{n}, 1000 \log \mathrm{n}, \mathrm{n} \log \mathrm{n}, 2 \mathrm{n}!, 2^{\mathrm{n}}, 3^{\mathrm{n}}$, and $\mathrm{n}^{2} / 1,000,000$ in a list so that each function is a big- O of the next function.

Exercise 3

(10 points)
Give a big-O estimate for each of these functions. For the function g in your estimate $\mathrm{f}(\mathrm{x})$ is $\mathrm{O}(\mathrm{g}(\mathrm{x}))$, use a simple function g of smallest order.

American University of Beirut

a) $\left(\mathrm{n}^{3}+\mathrm{n}^{2} \log \mathrm{n}\right)(\log \mathrm{n}+1)+(17 \log \mathrm{n}+19)\left(\mathrm{n}^{3}+2\right)$
b) $\left(2^{n}+n^{2}\right)\left(n^{3}+3^{n}\right)$
c) $\left(\mathrm{n}^{\mathrm{n}}+\mathrm{n} 2^{\mathrm{n}}+5^{\mathrm{n}}\right)\left(\mathrm{n}!+5^{\mathrm{n}}\right)$

Exercise 4

Show that each of these pairs of functions are of the same order.
a) $2 x^{2}+x-7, x^{2}$
b) $\lfloor x+1 / 2\rfloor, x$
c) $\log \left(x^{2}+1\right), \log x^{2}$
d) $\log _{10} x, \log _{2} x$

Exercise 5

(10 points)
Given a real number x and a positive integer k , determine the number of multiplications used to find $\mathrm{x}^{2^{k}}$ starting with x and successively squaring (to find $\mathrm{x}^{2}, \mathrm{x}^{4}$, and so on). Is this a more efficient way to find $\mathrm{x}^{2^{\mathrm{k}}}$ than by multiplying x by itself the appropriate number of times?

Exercise 6

(10 points)
What is the largest n for which one can solve a certain problem with input size n within a day using an algorithm that requires $\mathrm{f}(\mathrm{n})$ bit operations, where each bit operation is carried out in 10^{-11} seconds, with these functions $\mathrm{f}(\mathrm{n})$?
a) $\log \mathrm{n}$
b) 1000 n
c) n^{2}
d) $1000 \mathrm{n}^{2}$
e) n^{3}
f) 2^{n}
g) $2^{2 n}$
h) $2^{2^{n}}$

Exercise 7

An algorithm is called optimal for the solution of a problem with respect to a specified operation if there is no algorithm for solving this problem using fewer operations.

American University of Beirut Department of Computer Science CMPS 211 - Discrete Mathematics - Fall 13/14

a) Is the linear search algorithm optimal with respect to the number of comparisons of integers (not including comparisons used for bookkeeping in the loop)?
b) Show that the following Algorithm A is an optimal algorithm with respect to the number of comparisons of integers. [Note: Comparisons used for bookkeeping in the loop are not of concern here.]

```
ALGORITHM A: Finding the Maximum Element in a Finite Sequence.
procedure \(\max \left(a_{1}, a_{2}, \ldots, a_{n}\right.\) : integers \()\)
\(\max :=\mathrm{a}_{1}\)
for \(\mathrm{i}:=2\) to n
    if max \(<\mathrm{a}_{\mathrm{i}}\) then max: \(=\mathrm{a}_{\mathrm{i}}\)
return \(\max \{\max\) is the largest element \(\}\)
```


Exercise 8

(10 points)
Describe an algorithm that takes as input a list of n integers in nondecreasing order and produces the list of all values that occur more than once. (Recall that a list of integers is nondecreasing if each integer in the list is at least as large as the previous integer in the list). Determine the worst-case time complexity in terms of comparisons for your algorithm.

Exercise 9

(10 points)
Find the complexity of a brute-force algorithm for scheduling the talks by examining all possible subsets of the talks. [Hint: Use the fact that a set with n elements has 2^{n} subsets.]

Exercise 10

 (10 points)Describe how the number of comparisons used in the worst case changes when these algorithms are used to search for an element of a list when the size of the list doubles from n to 2 n , where n is a positive integer.
a) linear search
b) binary search

